What is this information being used for?<\/li>\n<\/ul>\nWe know that\u202freports and dashboards have been\u202fin vogue\u202ffor a while, so what changed? Interestingly, quite a bit has changed though the fundamentals remain the same.\u202fLet\u2019s find out:<\/p>\n
Decision intelligence<\/strong><\/p>\nDumping data and information on a\u202fvisualization\u202ftool is only going to make it a\u202fbusy dashboard\u202fand\u202fnot a useful\u202fone. Hence the need to understand what metrics make sense and\u202fprioritize. Focus on what \u201cdecisions\u201d the users of the dashboard can make or infer based on the visual.\u202f So, \u202fmove towards Decision Intelligence.<\/p>\n
Exploratory insights<\/strong><\/p>\nEarlier, reporting and dashboards were typically used for well-understood areas of business for descriptive analysis. Now,\u202fthings have changed (and for good).\u202fCompanies\u202fnow want to look at exploratory data. Data that\u202fisn\u2019t\u202fvery clear,\u202fif presented and given the ability to slice and dice,\u202fwith an\u202foption to\u202fcreate self-service style visuals\u202fwould become\u202fa great feature to have for a business. It also\u202fmakes a more\u202fcompelling use case for dashboards and\u202fvisualizations\u202fin general.\u202f So, \u202ffocus on deriving unknown\/exploratory insights.<\/p>\n
New age data\u202fvisualization<\/strong><\/p>\nIn line with the rest of the technology trends, it is now a hygiene factor to have the ability to integrate advanced analytics within a report (without the need for data science practitioners chipping in) or ask question that needs to be answered through a voice or text. Ask the question (and tweak it) to see the information presented dynamically.\u202f Ask differently and get more from the data.<\/p>\n
Hyper-personalization<\/strong><\/p>\nDifferent\u202fpeople\u202fhave\u202fdifferent expectations from reports and dashboards. Hence the design and metrics need to talk to the user and their role. Yes,\u202fthis\u202fmight sound\u202flike we are heading towards\u202fhyper-personalization\u202fin\u202fvisualization,\u202fbut\u202fthat\u2019s\u202fnot an exaggeration.<\/p>\n
Use the right tool<\/strong><\/p>\nLike everything thing else in the tech space,\u202fvisualization\u202fhas moved to the cloud (for scalability and maintainability reasons) and more importantly because newer features are being released in the cloud version first and only then in the on-premises edition (if for some reason a tool has both).\u202fLearn,\u202fadapt,\u202fand use that new and shiny tool.<\/p>\n
Design over tool<\/strong><\/p>\nMore and more people are interested in consuming reports from where they are \u2013 be it embedded reports within a web application or a mobile version of the dashboard or maybe an infographic within a journal. This ease of consumption is driving the tools needed to render the right kind of visualization.\u202fGet your design right and then decide on the tool.<\/p>\n
This space is only going to get even more crowded and exciting. We will probably see a lot more extended reality, augmented analytics,\u202fand cloud-based\u202fplatforms for handling visualization needs. So, what do we do?<\/p>\n
This again takes us back to the basics:<\/p>\n
\n- People<\/li>\n
- Process<\/li>\n
- Technology<\/li>\n<\/ul>\n
The people aspect<\/strong><\/p>\nBI engineers, data analysts,\u202fand to a large extent ML engineers\u202fhave to\u202fstart thinking of themselves as digital evangelists. How many times have we heard \u201cdata-driven enterprises\u201d in the recent past? When you essentially break it down, it means people that can help tell a story of what a business is or what a business \u201ccan be\u201d using data. So yes, \u202fdata analysts, \u202fto, \u202fstorytellers, \u202fto, \u202fdigital agents and evangelists.<\/p>\n
The process aspect<\/strong><\/p>\nThis aspect is kind of neglected since\u202fvisualization\u202fsomehow is sandwiched between data engineering and machine learning. But, every\u202fvisualization\u202f(reports\/dashboards) needs its own lifecycle management, templates for gathering requirements, clearly articulated success criteria, a feasible testing strategy, and a lot more. Time to focus on this aspect and\u202fnot look at reporting as an afterthought post-product development.<\/p>\n
The technology aspect<\/strong><\/p>\nNot going to deny, this is where it gets clumsy! Whatever tool and tech we decide on, will always have pros and cons. Hence the ideal thing to do here will be to try and get the design right (the pipelines, frequency of refresh, calculations of metrics, deployment of upstream processes). The tool being used for\u202fvisualization\u202fthen becomes just that \u2013\u202fa tool. That said,\u202fkeeping an eye on all features and newer tools in this space and building CoEs within the company will become a game-changer.<\/p>\n
Conclusion<\/strong><\/p>\nOrganizations that previously relied on dashboards and manual data analysis are shifting to decision intelligence to help their business and analytics teams make better decisions, faster, and more consistently. Data-driven insights are at the core of fostering new business opportunities, enhancing operational efficiency, and fostering customer relationships. Organizations will eventually rely on DI as a common strategy tool to quickly choose the best potential business results.<\/p>\n
The path to these results will be swiftly accelerated by DI, which will allow for quicker decision-making while eradicating the frequent mistakes connected to BI, such as multiple versions of the truth, decision latency, and human biases. By 2023, a third (33%) of major businesses, according to Gartner, will have analysts using decision modeling and other forms of decision intelligence.<\/p>\n
By uncovering insights that might otherwise take months to uncover and providing suggested next steps, decision intelligence should complement business intelligence. Despite its ability to automate, decision intelligence should only be applied to simple, recurring tasks that are the consequence of automatically surfacing insights.<\/p>\n
To know more about decision intelligence and data visualization, please visit Cigniti Business Intelligence \/ Visualization.<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"There has been a lot of buzz around decision intelligence (DI) recently. By 2030, 70% of firms, according to McKinsey, would employ decision intelligence in one way or another. Organizations are more likely to be data-driven as the popularity of big data and cloud computing continues to soar. Organizations who earlier desired to be data-first […]<\/p>\n","protected":false},"author":2,"featured_media":17937,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"footnotes":""},"categories":[4309,4318],"tags":[2174,4383,323,4384,4385,4386,4325,4387,4388,4389,4014,4390,4391],"ppma_author":[3736],"class_list":["post-17936","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-business-intelligence","category-visualization","tag-ai","tag-bi-services","tag-business-intelligence","tag-business-intelligence-services","tag-business-intelligence-solutions","tag-data-exploratory-insights","tag-data-visualization","tag-data-visualization-services","tag-decision-intelligence","tag-decision-intelligence-services","tag-digital-engineering-services","tag-hyper-personalization-in-visualization","tag-ml"],"authors":[{"term_id":3736,"user_id":2,"is_guest":0,"slug":"admin","display_name":"Cigniti Technologies","avatar_url":{"url":"https:\/\/www.cigniti.com\/blog\/wp-content\/uploads\/120X120-1.png","url2x":"https:\/\/www.cigniti.com\/blog\/wp-content\/uploads\/120X120-1.png"},"user_url":"http:\/\/www.cigniti.com\/","last_name":"Technologies","first_name":"Cigniti","job_title":"","description":"Cigniti is the world\u2019s leading AI & IP-led Digital Assurance and Digital Engineering services company with offices in India, the USA, Canada, the UK, the UAE, Australia, South Africa, the Czech Republic, and Singapore. We help companies accelerate their digital transformation journey across various stages of digital adoption and help them achieve market leadership."}],"_links":{"self":[{"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/posts\/17936","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/comments?post=17936"}],"version-history":[{"count":0,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/posts\/17936\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/media\/17937"}],"wp:attachment":[{"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/media?parent=17936"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/categories?post=17936"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/tags?post=17936"},{"taxonomy":"author","embeddable":true,"href":"https:\/\/www.cigniti.com\/blog\/wp-json\/wp\/v2\/ppma_author?post=17936"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}